
BSX88A

HIGH FREQUENCY, HIGH SPEED

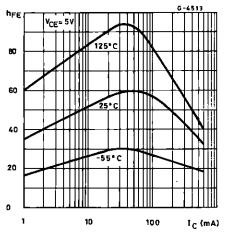
DESCRIPTION

The BSX88A is a silicon planar epitaxial NPN transistor specially designed as high speed saturated logic switch. It features 20 Volt. V_{CEO} , low saturation voltage and fast switching times from 10 to 300mA.

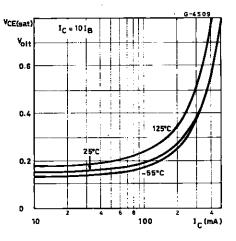
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage ($I_E = 0$)	40	V
V _{CEO}	Collector-emitter Voltage $(I_B = 0)$	20	V
V _{EBO}	Emitter-base Voltage ($I_C = 0$)	5.5	V
Ι _C	Collector Current	500	mA
P _{tot}	Total Power Dissipation at $T_{amb} \le 25 \text{ °C}$	0.36	W
	at T _{case} ≤ 25 °C	1.2	W
T _{stg} , T _j	Storage and Junction Temperature	– 55 to 200	°C

THERMAL DATA

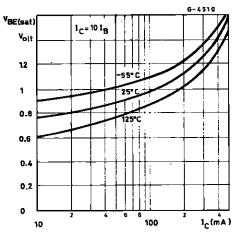

R _{th j-case}	Thermal Resistance Junction-case	Max	145	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	486	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \ ^{\circ}C$ unless otherwise specified)

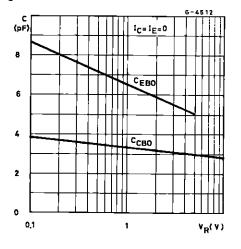

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cutoff Current (V _{EB} = 0)	V _{CE} = 20 V				0.3	μA
$V_{(BR)CBO}$	Collector-base Breakdown Voltage (I _E = 0)	I _C = 100 μA		40			V
V _{(BR)EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 100 μA		5.5			V
$V_{(BR)CEO}^{*}$	Collector-emitter Breakdown Voltage $(I_B = 0)$	I _C = 10 mA		20			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = 10 mA I _C = 100 mA	I _B = 1 mA I _B = 10 mA			0.18 0.39	V V
V _{BE(sat)} *	Base-emitter Saturation Voltage	I _C = 10 mA I _C = 100 mA	I _B = 1 mA I _B = 10 mA	0.72	0.77	0.8 1.2	V V
h _{FE} *	DC Current Gain	$I_{C} = 0.5 \text{ mA}$ $I_{C} = 10 \text{ mA}$ $I_{C} = 100 \text{ mA}$	$V_{CE} = 1 V$ $V_{CE} = 1 V$ $V_{CE} = 1 V$	15 30 35	30 50 55		
h _{fe}	High Frequency Current Gain (f = 100 MHz)	I _C = 30 mA	V _{CE} = 10 V	3.5	5.8		
C _{CBO}	Collector-base Capacitance	I _E = 0 f = 1 MHz	$V_{CB} = 0.5 V$		3	5	pF
C _{EBO}	Emitter-base Capacitance	I _C = 0 f = 1 MHz	$V_{EB} = 0.5 V$		7	8	pF
t _s **	Change Storage Time Constant	$I_{\rm C} = I_{\rm B1} = I_{\rm B2} =$	= 10 mA			20	ns
t _{on} **	Turn-on Time	I _C = 10 mA V _{BE} = - 2 V	I _{B1} = 3 mA			30	ns
t _{off} **	Turn-off Time	I _C = 10 mA V _{BE} = - 2 V	I _{B1} = 3 mA			70	ns

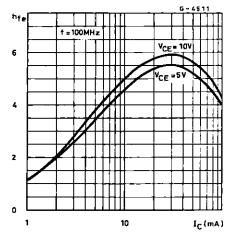
* Pulsed : pulse duration = $300\mu s$, duty cycle = 1%. ** See test circuit.

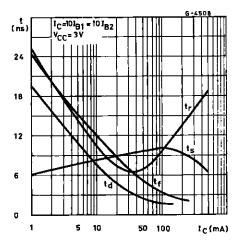
DC Pulse Current Gain vs. Collector Current.



Collector Saturation Voltage vs. Collector Current.

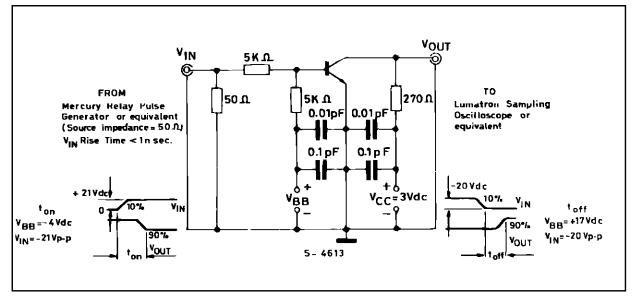


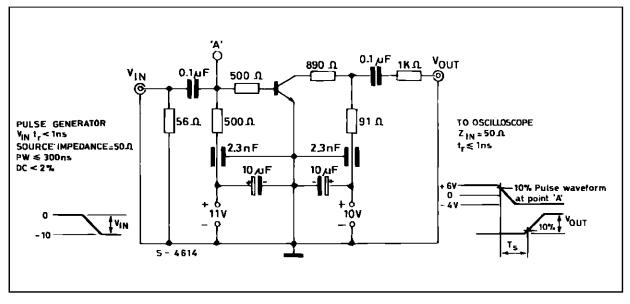

Base Saturation Voltage vs. Collector Current.


Input and Output Capacitance vs. Reverse Bias Voltage.

High Frequency Current Gain vs. Collector Current.

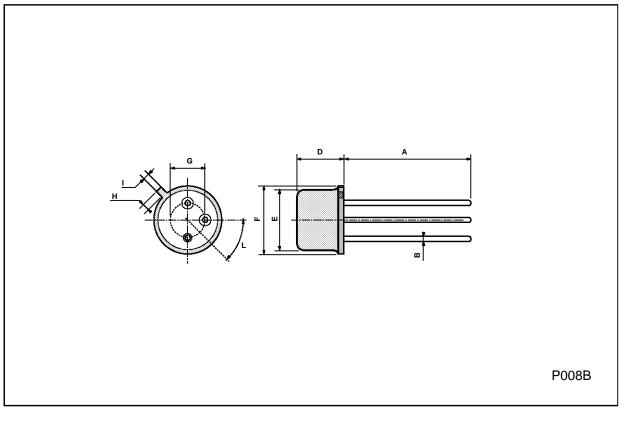
Switching Times vs. Collector Current.




BSX88A

TEST CIRCUITS

Test circuit for ton, toff.



Test circuit for ts.

DIM.		mm		inch											
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.									
А	12.7			0.500											
В			0.49			0.019									
D			6.6			0.260									
E			8.5			0.334									
F			9.4			0.370									
G	5.08			0.200											
н			1.2			0.047									
I			0.9			0.035									
L			45°	(typ.)											

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

